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Analysing of the Yarn Pull-out Process 

Abstract: Our goal was to test the theoretical yarn pull-out model we developed. We examined eight 

glass woven fabrics from the same manufacturer. We compared the values provided by the theoretical 

model with the measurement results, and based on these, we determined the relationship between the 

length of the yarn embedded in the woven fabric and the tensile force acting on the yarn. All in all, 

we concluded that the model described the yarn pull-out process well; hence it can be applied to more 

complex woven fabric models and simulations. 
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1 The Principle of Yarn Pull-out 

Woven fabric made of glass fibres is one of the most commonly used fibrous structures for 

reinforcing polymer composite products [1-4]. Regarding the 3D shape of the manufactured 

product, the reinforcing fabric may be assumed to be a twice-curved surface. Such great 

displacements and deformations significantly influence the endurance and properties of 

composite structures. The deformability of the reinforcing fabric mostly depends on the 

friction among yarns, hence it is very important to examine and analyse [5, 6]. One possible 

measurement method is the yarn pull-out test. Knowing the friction process between the 

crossing yarns, we can describe the behaviour of the fabric with models as close to reality 

as possible, and it provides the basis for simulation, calculation and design [7, 8]. 

The principle of yarn pull-out can be seen in Figure 1 [10]. During the yarn pull-out test, 

the woven fabric has to be clamped on both sides, then parallel to the clamps one roving is 

pulled from the centre line. During the pull-out process, the pull-out force and the 

displacement of the gripped roving end are measured [9]. 

 

Figure 1 Principle of yarn pull-out  

Measurement results are influenced by the speed of pulling out, the clamping width, the 

position of the clamps and the type of the clamps. It is not a standardised test; consequently 

it neither has a standardised implementing, nor a standardised evaluation process.  

The yarn pull-out test can mainly be used to characterize the interaction among yarns. The 

yarn pull-out force is influenced by several parameters, for example the binding mode of 

the woven fabric, the pull-out length and the deformation of the fabric during pull-out [9]. 
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The background of the processes during the pull-out has not been sufficiently explored yet, 

but from time to time new models are created in order to determine certain parameters. To 

mention a few examples: Pan and Yon [11] gave a theoretical estimation for the critical 

yarn length, which is the smallest length of the yarn in the fabric that breaks instead of 

slipping out of the fabric. Das et al. [12], Al-Gaadi [13], Prodromou and Chen [14] 

determined the coefficient of friction from the yarn pull-out test. There are a lot of papers 

dealing with the analysis and modelling of this phenomenon [10, 15-19]. Then, a simple 

model we elaborated will be discussed. 

2 Yarn Pull-out Model 

Considering the model of the yarn pull-out process, two sections can be distinguished: the 

yarn section, which is embedded in the woven fabric and the free yarn section, which is not 

built in the woven fabric (Figure 2). The yarn pull-out process is essentially a mass 

transport process. In the examined cases it is assumed that the yarn section in the woven 

fabric is inextensible and the free yarn section is deformable and linear elastic. In all cases 

discussed in this paper, the fundamental equation is a simple mass transport equation (1): 
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where Lw0 [mm] is the initial unloaded length of the yarn embedded in the woven fabric, l0 

[mm] is the length of the free yarn section between the edge of the fabric and the grip, K 

[N] is the tensile stiffness of the yarn, F(t) [N] is the measured yarn tensile force, u [mm] is 

the controlled displacement of the grip, and t0 is the time point when the force reaches the 

value where the yarn in the fabric starts moving, hence F(t0) is the global peak value. 

Fundamentally, we used two approximations. Figure 2 helps to understand this conception. 

The first case is based on a theoretical model (Figure 2), in which a relationship between 

the length of the yarn embedded in the woven fabric (lw0(t)) and the tensile force acting on 

the yarn (F(t)) is defined as a function of time. From that the relationship between the 

measured quantities such as the pull-out force (F(t)) and the displacement of the free yarn 

section (u(t)) during the pull-out can be determined. In this case, the evaluation of the 

measurement results is based on a theoretical model, hence the measurement can validate 

the theoretical model. 
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Figure 2 Conceptions of the yarn pull-out cases 

 

Figure 3 and Figure 4 help to understand the quantities introduced above properly. 

 

 

Figure 3 Yarn pull-out diagram of a typical glass woven fabric, with force and displacement type quantities from 

Equation (1)  

 



 – 5 –

 

Figure 4 Explanation of the length type quantities from Equation (1) 

In the second case, the measurement results are considered the basis (Figure 2), in which a 

fitted mathematical relationship is determined between the measured pull-out force and the 

measured displacement influenced by the length of the free yarn section. In the knowledge 

of that, the relation between the length of the yarn embedded in the woven fabric and the 

tensile force acting on the yarn can be assessed, which can be compared to the theoretical 

model. All that provides information about the applicability of the model used and how to 

improve that. 

Different kinds of trend functions can be fitted to the measured yarn pull-out curve, but 

considering the monotonic decreasing character of the curve, the two most suitable trend 

functions proved to be the exponential and the logarithmic functions. The simplest belt 

friction model, the Euler-Eytelwein equation gives an exponential solution, hence in a more 

complex belt frictional behaviour we expected exponential process. The character of the 

logarithmic curve, which is the inverse of the exponential one, can be similar to the 

monotonic decreasing exponential curve, moreover the exponential and logarithmic curves 

exhibit useful robust behaviour, which means that they are not parameter sensitive when 

fitting them to measurements. 

For the analysis and evaluation of the pull-out test results, an appropriate model is needed, 

which provides a mathematical relationship valid at any time point t (0≤t0<t≤T) between 

the length of the yarn embedded in the woven fabric and the pull-out force, which is the 

resistance of the yarn against pulling-out. Then, an exponential theoretical model and two 

trends fitted to measurements are proposed and discussed. 
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2.1 Theoretical Exponential Yarn Pull-out Model 

The model assumes an exponential relationship (exp. model) between F(t) and lw0(t), which 

is similar to the Euler-Eytelwein friction equation, where F0>0 is a small force loading the 

far end of the yarn in the fabric: 
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Rearranging Equation (2) leads to: 
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where B>0 is the belt friction constant, which is given by the dynamic coefficient of 

friction (µd), the cylinder radius (R) and the fraction of the contact length of the yarn 

(0≤ξ≤1) when belt friction is assumed: 

R
B d  (4) 

Expressing lw0 from Equation (2) and substituting it into Equation (1) leads to: 
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Introducing x, y and z normalized variables provides: 
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It can be seen that x is a displacement type, y is a force type and z is a yarn length type 

normalized quantity. 

Rearranging the right side of Equation (5) to get x from Equation (6) and using Equation (7) 

leads to: 
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The following notations are introduced: 
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From Equation (9), with the use of a, b, c, h, the following implicit relationship can be 

written for y: 
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If a=0, Equation (14) can be simplified: 
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Expressing y from Equation (15) gives a special, explicit relationship, which can be used in 

the case of small deformations: 
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Equation (11) indicates that a small c value means strong belt friction effects, while a large 

c value indicates weak ones. 

2.2 Exponential Trend Fitted to the Measured Curve 

In the belt friction models the exponential relationship plays a significant role, as well as 

taking into account the monotonic decreasing character observed by testing, firstly we 

applied the following exponential function to the numerical approximation of the pull-out 

process determined by the recorded tensile force, F(t), and displacement, u(t): 
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where considering its physical content, B is the same as in the previous case, but it has a 

different value. 

Rearranging Equation (17) and substituting it into Equation (7) leads to: 
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Using Equation (10), (11) and (12), we get: 
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Applying Equation (6), (7), (8), (10) and (13) provides: 

)1)(1()1()1)(1( yahahayzh   (21) 

Expressing z from Equation (21) gives: 
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Substituting Equation (19) into Equation (22) leads to a relationship between z and x: 
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If a=0 then: 
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2.3 Logarithmic Trend Fitted to the Measured Curve 

As the second test function for the measured tensile force, F(t), versus displacement, u(t), 

relationship we selected the next logarithmic function, since as the inverse of the previously 

used exponential one it can also have a monotonic decreasing shape that is limited by a 

finite displacement where the function becomes zero similarly to the measurements: 
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where 
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Rearranging Equation (25) and substituting it into Equation (7) leads to: 
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Substituting Equation (27) into Equation (22) leads to a connection between x and y: 
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If a=0 then: 
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3 Materials Examined and Their Properties 

We used eight different glass woven fabrics provided by Unique Textiles to examine pull-

out behaviour. Six of them can be divided into three pairs. Each pair had the same area 

density, but a different weave pattern. The other two had approximately the same area 

density, but special structures. The nominal details of the glass woven fabrics can be seen 

in Table 1, the structural-geometrical properties are contained in Table 2. 
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Table 1 Nominal details of the examined materials 

Material code 
Width 
[cm] 

Weight 
[g/m2] 

Warp 
density 
[1/cm] 

Weft 
density 
[1/cm] 

Warp and 
weft yarns 

code 
Weave 

UTE 80P 100 80 12.0 11.4 EC 9-34 Plain 1/1 

UTE 80T 100 80 12.0 11.4 EC 9-34 Twill  2/2 

UTE 195P 100 195 8.0 6.0 EC 13-136 Plain 1/1 

UTE 195T 100 195 8.0 6.0 EC 13-136 Twill  2/2 

UTE-TG 330P 127 330 N/A N/A N/A Plain 1/1 

UTE 306T 100 306 12.0 11.0 
EC 9-

68 
EC 11-

204 
Twill 2/2 

UTE 390P 100 390 7.4 6.8 EC13-272 Plain 1/1 

UTE 390T 100 390 7.4 6.8 EC13-272 Twill 2/2 

 

We performed tensile tests on the warp yarns of the glass woven fabrics, five on each 

material; gauge length was 50 mm and the extension rate was 100 mm/min. The tensile test 

properties of the examined materials can be seen in Table 3, where Fmax is the maximal 

force on the tensile curve, umax and εmax are grip displacement and strain at maximal force, 

respectively. The latter is equal to the elongation at break of the yarn in this case, and 

finally Q means the maximal force divided by the linear density of the yarn. 

 

Table 2 Structural-geometrical details of the examined materials 

Material code Linear density 
[tex] 

Yarn 
density 
[1/cm] 

Weight 
[g/m2] 

Crimp 
[-] 

Thickness 
[mm] 

 
Warp  Weft  Warp  Weft 

UTE 80P 34.70 33.70 12 11 79.74 0.004 0.07 

UTE 80T 34.43 34.67 12 11 80.18 0.002 0.06 

UTE 195P 137.67 136.43 8 6 187.92 0.006 0.20 

UTE 195T 140.27 137.50 8 6 185.05 0.003 0.20 

UTE-TG 330P 282.09 269.20 4 3 323.87 0.023 0.40 

UTE 306T 69.20 203.53 9 11 307.75 0.013 0.25 

UTE 390P 272.20 267.99 7 7 372.68 0.009 0.40 

UTE 390T 264.18 279.52 7 7 388.11 0.008 0.35 
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Table 3 Tensile test properties of the examined materials 

Material code 
Fmax 
[N] 

Q 
[N/tex] 

umax 
[mm] 

εmax 
[-] 

K 
[N] 

UTE 80P 
13.30 
±0.78 

0.38 
±0.02 

1.69 
±0.10 

3.39 
±0.20 

1381.0 

UTE 80T 
14.63 
±0.96 

0.42 
±0.03 

1.77 
±0.17 

3.54 
±0.34 

1506.5 

UTE 195P 
36.36 
±1.72 

0.26 
±0.01 

2.00 
±0.14 

3.99 
±0.27 

1138.1 

UTE 195T 
38.45 
±1.30 

0.27 
±0.01 

3.28 
±0.79 

6.56 
±1.58 

1324.0 

UTE-TG 330P 
121.78 
±14.19 

0.43 
±0.05 

5.36 
±0.31 

10.73 
±0.63 

1456.4 

UTE 306T 
32.79 
±0.78 

0.47 
±0.78 

1.86 
±0.22 

3.72 
±0.45 

1956.8 

UTE 390P 
90.39 
±8.92 

0.34 
±0.03 

3.44 
±0.28 

6.88 
±0.56 

1108.7 

UTE 390T 
98.64 
±7.11 

0.37 
±0.03 

3.64 
±0.26 

7.28 
±0.52 

1107.0 

 

4 Evaluation of the Yarn Pull-out Measurements 

4.1 Testing Device 

Yarn pull-out measurements were carried out with a special, multifunctional woven fabric 

testing device [20, 21]. 

This is a complex, multifunctional device, with which shear and yarn-pull out tests can be 

performed as well. The yarn pull-out set up can be seen in Figure 5/A [21]. 

The device can be connected to the tensile tester with four fastening screws. The purpose of 

the device is to grip the test sample properly, hence the measurement of the force and the 

movement of the sample are done by the tensile tester. 

Before starting the test, the sample has to be clamped. The clamps are moveable sideways, 

but they can be fixed. The whole apparatus can be turned into a horizontal position during 
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the insertion of the sample, hence it makes gripping the test sample easier (Figure 5/B and 

5/C) [21]. After gripping the sample, the clamps have to be set to a vertical position, while 

the centre line of the sample has to be positioned to the centre line of the yarn clamping unit 

connected to the crosshead of the tensile tester. Then a single roving from the centre line of 

the sample is gripped by the yarn clamping unit. After that the measurement can be started. 

The size of the tested samples was 200 mm x 200 mm. The extension rate was the same as 

during the tensile test: 100 mm/min. The initial length of the free yarn section from the end 

of the fabric to the yarn clamping unit was 19.5 mm. 

 

Figure 5 Multifunctional woven fabric testing device  

(A: beginning of the test, B: tilted to horizontal position, C: specimen gripping, 1: clamping unit connected 

to the crosshead of the tensile tester, 2: test specimen, 3: clamps, 4: pretension spring, 5: motherboard, 6: 

gears for adjusting pretension, 7: linear bearing, 8: rollers with bearings)  

4.2 Evaluation and Discussion 

The process of evaluation can be seen in Figure 6. We are going to demonstrate the 

evaluation process with the UTE 195P material, as an example. 
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Figure 6 Process chart of evaluation 

From the five measured force-displacement curves (Figure 7), a mean curve (Figure 8) was 

calculated. Based on that curve, we determined the quantities in Figure 2, then normalized 

the u(t0) – u(T) section, which is used in the evaluation, with Equation (6) and (7). This 

method provided a curve, which we will call the basis curve (Figure 9). 

 

Figure 7 UTE 195P yarn pull-out curves 
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Figure 8 UTE 195P mean curve 

 

Figure 9 UTE 195P basis curve 

In the first case, according to Equation (16), the estimated y values based on the theoretical 

model were calculated at different values of c, thus we were able to determine the optimal 

value of c with iteration (Figure 10). 
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Figure 10 Calculated curves based on the theoretical model with different c values 

The difference between the calculated curve based on the model and the basis curve was 

described with the (relative) mean squared error, which is closely related to the coefficient 

of determination. The optimal value of c belongs to the minimal mean squared error. The 

mean squared error (hmse) was calculated according to Equation (31): 
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where m is the number of the measured points and yest is the estimated value of y according 

to Equation (16). The calculated values can be seen in Table 4. 

In the second case, we were looking for an exponential and a logarithmic trend function for 

the basis curve (Figure 11), in forms that are given by Equation (24) and (30).  
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Figure 11 Fitting an exponential and a logarithmic trend to the UTE 195P basis curve 

We wrote a program with Wolfram Mathematica 11.1.1., which sought trend functions in 

those specific forms. With the help of that, the required values b and D were given. In these 

cases, the fitted curves were rated by the mean squared error. The calculated values can be 

seen in Table 4. 

Table 4 Curve fitting results 

 Exp. model Exp. trend Log. trend 

Material code c hmse [% ] b hmse [% ] D hmse [% ] 

UTE 80P 0.10 3.71 2.44 3.70 0.91 1.79 

UTE 80T 0.07 2.82 2.77 2.81 0.93 0.94 

UTE 195P 0.09 2.76 2.48 2.76 0.91 0.80 

UTE 195T 0.13 1.84 2.16 1.83 0.88 1.05 

UTE-TG 330P 0.08 4.07 2.58 4.07 0.92 1.55 

UTE 306T 0.12 1.53 2.20 1.51 0.88 1.81 

UTE 390P 0.19 2.34 1.81 2.31 0.84 1.05 

UTE 390T 0.10 1.16 2.36 1.09 0.90 1.72 

 

According to Table 4, the (relative) mean squared error (hmse) is below 4.1% in every case 

hence both the exponential model and the two trends can be used for describing the 

measured process mathematically. Moreover, in the case of the logarithmic trend it is 

smaller than 2% meaning a somewhat better quantitative fitting. Nevertheless, applying the 
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exponential model or trend, the hmse for the twill fabrics (1.09-2.82) is significantly smaller 

(by ~0.9-2.5%) than that for the plain ones (2.31-4.07), on the other hand the hmse for the 

twill fabrics exhibit consistent decrease with the increasing area density. These may be 

explained by the structural difference since the twill weave pattern contains less transitional 

places than the plain one, otherwise the larger area density is realized by smaller warp yarn 

density which may lead to more determined „belt-friction-like” behaviour. However, fitting 

the logarithmic trend leads to smaller hmse values and smaller differences between the plain 

and twill hmse values otherwise the sign of the latter is positive only for the fabric of least 

area density. Thus, we may say that, in the examined cases, the belt friction based 

exponential description, although it provides somewhat larger fitting error, can be more 

sensitive to the structural differences than the logarithmic one. 

5 Conclusions 

We created a simple theoretical yarn pull-out model and two approximations. To examine 

their applicability, we performed yarn pull-out tests on eight different glass woven fabrics 

and evaluated the measurement results in order to analyse and model the yarn pull-out 

process. Although the theoretical model does not take the decaying periodicity of the yarn 

pull-out curve into consideration, with the appropriate value of c the proposed theoretical 

model can describe the character of the pull-out curve and the exponential and logarithmic 

approximations can contribute to further modelling and development. Their applicability is 

confirmed by the fact that the deviation between the results of models and measurements 

was less than 5% in all cases. In addition, when the deformation is small enough or the 

tensile stiffness of the yarn is large, the relationship between the pulling-out force and the 

length of the yarn gripped in the fabric can be approximated by a homogeneous linear 

function in both the exponential and the logarithmic trends. This may be crucially important 

in the case of large tensile modulus such as that of the carbon fibers. 
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